MPD ECAL: Performance/Optimisation.

DUNE ND Workshop

Eldwan Brianne DESY, 22nd October 2019

The Near Detector Hall.

The limited space

- The space in the near detector hall is very limited
- Imposes constrain on the side of the TPC + ECAL + Magnet
- The sizes:
 - TPC Radius 2.7 m / length 5 m
 - Magnet Radius 3.5 m
 - ~ 60-80 cm of space for the ECAL
 - ~ 60 cm for the muon tagger

The MPD ECAL.

Roles and key numbers

- The role of the MPD ECAL
 - Identify neutral pions (NC background) photon energy and angle measurement
 - Provide accurate timestamp of the event (TPC-ECAL track matching)
 - Particle ID via calorimetric variables and ToF
 - Bonus: Neutron energy reconstruction
- Typical photon energy range: ~few MeVs → small stochastic term needed
 - ~5-6%/Sqrt(E[GeV])
 - ~few deg /Sqrt(E[GeV])
- drives longitudinal segmentation / granularity
- Neutrons [→] few 100 ps time resolution

The ECAL baseline design.

Geometry

- Octagonal geometry
- Small side length ~2.3m, Large side length ~2.6m, Width ~1.5m
- Total surface ~ 120 m² at inner face
- Total weight ~ 200t (Barrel) + ~95t (Endcap)
- Layers
 - High granular layers with tiles of 2.5x2.5x5 cm³ readout with SiPM
 - Low granularity layers with strips of 4 cm width readout on both sides
- Absorber Cu
 - ~cm radiation length and "Small" moliere radius
 - thin absorber
 - larger spread of the shower along its main axis

The ECAL baseline design.

Performance

- Sampling structure
 - 2 mm Cu / 5 mm Sc
 - 8 high granularity layers (tiles) and 52 low granularity layers (strips)
- "Best" performance so far
 - ~5-6%/Sqrt(E)
 - ~6-7deg/Sqrt(E)
- Optimising based on this
 - Detector shape (polyhedra with more sides)
 - Absorber type Cu → Pb
 - Granularity (cost driver)
 - Neutron detection (more CH, less Absorber in front)

Optimisation of the shape.

Geometry

- Baseline shape Octagon
 - Not optimal in between "2" cylinders
- Going for higher number of sides Dodecagonal
- Advantage
 - Can fit more layers in the same space
 - Shorter modules (shorter strips)
- Disadvantage
 - Slight increase in cost (see Frank's slides)
- Better Eres and Ares
 - Recover leakage with more layers. ~2-3% better at higher energies
 - Angular resolution better due to shorter strips?

Optimisation of the absorber.

Revisiting lead as absorber

- Decided to revisit Lead
- Can fit 8 HG layers and 82 LG layers + 2 thick slabs (130 mm) in the back
 - Increase from 1 λ to 1.5 λ (better for mu/pi ID)
- Sampling structure
 - 0.5 mm Pb / 3 mm Sc
- Energy resolution
 - Better at lower photon energies slight increase in sampling frequency
- Angular resolution
 - Way worse due to larger moliere radius (shower looks more "blobby")
 - Decrease of Sc thickness (analysis favors high energy depositions)
 - Will also impact neutron detection efficiency
- Does not look bad but
 - Need to increase Sc thickness
 - Limit number of additional layers to avoid increase of cost

Optimisation of the granularity.

Going full strip

- What if we drop the high granular layers?
 - Main cost driver
- Different strip width from 40 mm to 20 mm
- Energy resolution
 - As expected not much change compare to the baseline
- Angular resolution
 - Worse (~10 deg @ 50 MeV to ~few deg at GeVs) for large strip widths
 - Can be "recovered" with smaller strip width (10-20 mm)
 - May be improved with shorter strips
- May be an option, however
 - Timing Need for fiberless + more transparent scintillator
 - Effect on neutrons?

Neutron energy measurement.

Including backgrounds

- ECAL can be used for neutron energy reconstruction via ToF
 - Requires few tens ps time resolution
- Study with background done by Chris Marshall (See Chris's slides)
- Overall promising!
 - ~40% efficiency with ~40% purity
- Large amount of re-scatters (~50%) → large tails in energy reconstruction and bias...
- Could be improved
 - Thicker scintillator slab in the front of the ECAL
 - Overall better absorber/Sc thickness ratio

True neutron KE (MeV)

$$50 < T_n < 100 \text{ MeV}$$

Time-assisted π^0 reconstruction.

Ongoing work

- See Frank's slides
- Previous results showed that π^0 mass reconstruction (few %) and vertex position (~20-30 cm) is quite good
- Need to be redone in the current framework
- Use of timing to improve the vertex position reconstruction
- Time-assisted π^0 reconstruction
 - Use the high energetic photon and time to get a rough knowledge of the vertex position (~few tens of cm) along the axis
 - Use this to determine the axis of the other photon
 - Reconstruct the invariant mass and chi2 minimisation using the mass information to improve the vertex position

Design ideas.

A little of brainstorming from Sunday

- Improve neutron detection/resolution
 - Going fully active Thick scintillator slab before the ECAL but limited in space...
 - Increase Sc thickness (larger Abs/Sc ratio less re-scatters)
- Reduce cost (see Frank's slides)
 - Going full strips (small width to keep angular resolution)
 - Partially equip the MPD (need enough angular coverage to cover for the full muon kinematics) in need some studies (amount of backscattered events)
 - Couple of timing layers upstream is fast time-stamping and better LAr-MPD track matching
- Integration ECAL and Muon "tagger"
 - Thin ECAL with "best" energy/angular resolution with thick slabs in the back (most of photons are low energy)
 - Integration between the magnet coils

Towards a TDR.

Prototyping?

- More a discussion here than a plan
- CALICE has been working hard on developing high granular calorimeters
- No show-stopper in terms of technology
 - Well under control in CALICE (SiPM technology, plastic, light yield, uniformity, mass-production, QA)
 - Fast-timing (~< ns) will need more work
 - Recent AHCAL prototype (22k channels) using 3x3x3cm³ cells
 - CMS is building part of the HGCAL based on this technology
- All ingredients are technically in place
 - but dedicated funding is an issue

SMD SiPMs, modification of direct coupling

Conclusions.

and a look to the next year

- Baseline design (60 layers with Cu) will be the base for the CDR
- Optimisation of the ECAL is ongoing work
 - ECAL shape has limited influence (better containment)
 - Using Pb will heavily degrade the angular resolution (need much thinner Pb layers)
 - Granularity: going full strips is certainly an option but need to go to small width sizes (10-20 mm)
- The ECAL has a good (but not ideal?) neutron detection efficiency and energy reconstruction
- Analyses are ongoing work
 - pi0 reconstruction
 - physics

Backup Slides.

A closer look

• From the first large-scale application of SiPMs to the "SiPM-on-tile" technology

2008 - 2016

Physics Prototype

Direct coupling of tiles and photon sensors

SMD SiPMs, modification of direct coupling

verification of tile performance in the lab

A closer look

- Mass production for a new 0.5 m³, 22k channel prototype
 - 24k tiles produced & wrapped

injection molding of PS based scintillator tiles

09/2017

automatic placement of tiles on electronics board (HBU), fully assembled with SiPMs and ASICs

11/2017 - 02/2018

10/2017 - 01/2018

semi-automatic wrapping of scintillator tiles

A closer look

A multi-step QA procedure

gain @ vbr_mean+5

spot testing of few % of 22k SiPMs, acceptance of 600 pc batches according to pre-defined criteria all batches accepted

integration of layers & interfaces, test in beam at DESY

test and calibration of all channels with cosmics

test of all ASICs (~80-90% yield) test of all assembled boards using

A closer look

• In May and June 2018: Test beam at CERN SPS - the smoothest CALICE test beams ever.

Analysis ongoing - first results soon

muon track